Can community structure track sea‐level rise? Stress and competitive controls in tidal wetlands

نویسندگان

  • Lisa M Schile
  • John C Callaway
  • Katharine N Suding
  • N Maggi Kelly
چکیده

Climate change impacts, such as accelerated sea-level rise, will affect stress gradients, yet impacts on competition/stress tolerance trade-offs and shifts in distributions are unclear. Ecosystems with strong stress gradients, such as estuaries, allow for space-for-time substitutions of stress factors and can give insight into future climate-related shifts in both resource and nonresource stresses. We tested the stress gradient hypothesis and examined the effect of increased inundation stress and biotic interactions on growth and survival of two congeneric wetland sedges, Schoenoplectus acutus and Schoenoplectus americanus. We simulated sea-level rise across existing marsh elevations and those not currently found to reflect potential future sea-level rise conditions in two tidal wetlands differing in salinity. Plants were grown individually and together at five tidal elevations, the lowest simulating an 80-cm increase in sea level, and harvested to assess differences in biomass after one growing season. Inundation time, salinity, sulfides, and redox potential were measured concurrently. As predicted, increasing inundation reduced biomass of the species commonly found at higher marsh elevations, with little effect on the species found along channel margins. The presence of neighbors reduced total biomass of both species, particularly at the highest elevation; facilitation did not occur at any elevation. Contrary to predictions, we documented the competitive superiority of the stress tolerator under increased inundation, which was not predicted by the stress gradient hypothesis. Multifactor manipulation experiments addressing plant response to accelerated climate change are integral to creating a more realistic, valuable, and needed assessment of potential ecosystem response. Our results point to the important and unpredicted synergies between physical stressors, which are predicted to increase in intensity with climate change, and competitive forces on biomass as stresses increase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ABSTRACT Title of Thesis: EFFECTS OF SEA LEVEL RISE ON TIDAL MARSHES

Title of Thesis: EFFECTS OF SEA LEVEL RISE ON TIDAL MARSHES Jennifer Holly Bryan, Master of Science, 2014 Thesis directed by: Assistant Professor Lora Harris University of Maryland Center for Environmental Science There is growing concern regarding the potentially negative impacts of sea level rise (SLR) on tidal wetlands in the Mid-Atlantic region of the United States. In Chapter one, I invest...

متن کامل

Tidal Marshes across a Chesapeake Bay Subestuary Are Not Keeping up with Sea-Level Rise

Sea-level rise is a major factor in wetland loss worldwide, and in much of Chesapeake Bay (USA) the rate of sea-level rise is higher than the current global rate of 3.2 mm yr-1 due to regional subsidence. Marshes along estuarine salinity gradients differ in vegetation composition, productivity, decomposition pathways, and sediment dynamics, and may exhibit different responses to sea-level rise....

متن کامل

Forecasting the effects of accelerated sea-level rise on tidal marsh ecosystem services

© The Ecological Society of America www.frontiersinecology.org T wetlands such as salt, brackish, and freshwater marshes provide essential ecosystem services to society. Such services include functions associated with regulation, habitat, and production (Daily et al. 1997; de Groot et al. 2002). Positioned at the interface between land and sea, tidal marshes are uniquely suited to provide ecosy...

متن کامل

Reinterpretation of Architectural Identity in a Tidal Waterfront City (Case Study:Transformation of the Riverbank Area in Banjarmasin’s Old City Center)

Banjarmasin is known as a tidal waterfront city and it is called City of a Thousand Rivers. The city level was approximately -16 cm below the sea level and almost a swamp-land. The urbanization and the city development programs have changed the city’s physical and spatial plan from a wetland to a mainland structure. The issues of the city's transformation have changed the city structure from th...

متن کامل

Simulating the Effects of Sea Level Rise on the Resilience and Migration of Tidal Wetlands along the Hudson River

Sea Level Rise (SLR) caused by climate change is impacting coastal wetlands around the globe. Due to their distinctive biophysical characteristics and unique plant communities, freshwater tidal wetlands are expected to exhibit a different response to SLR as compared with the better studied salt marshes. In this study we employed the Sea Level Affecting Marshes Model (SLAMM), which simulates reg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017